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ABSTRACT: Topological data analysis (TDA) is a tool from data science and mathematics that is beginning to make
waves in environmental science. In this work, we seek to provide an intuitive and understandable introduction to a tool
from TDA that is particularly useful for the analysis of imagery, namely, persistent homology. We briefly discuss the theo-
retical background but focus primarily on understanding the output of this tool and discussing what information it can
glean. To this end, we frame our discussion around a guiding example of classifying satellite images from the sugar, fish,
flower, and gravel dataset produced for the study of mesoscale organization of clouds by Rasp et al. We demonstrate how
persistent homology and its vectorization, persistence landscapes, can be used in a workflow with a simple machine learn-
ing algorithm to obtain good results, and we explore in detail how we can explain this behavior in terms of image-level fea-
tures. One of the core strengths of persistent homology is how interpretable it can be, so throughout this paper we discuss
not just the patterns we find but why those results are to be expected given what we know about the theory of persistent
homology. Our goal is that readers of this paper will leave with a better understanding of TDA and persistent homology,
will be able to identify problems and datasets of their own for which persistent homology could be helpful, and will gain an
understanding of the results they obtain from applying the included GitHub example code.

SIGNIFICANCE STATEMENT: Information such as the geometric structure and texture of image data can greatly
support the inference of the physical state of an observed Earth system, for example, in remote sensing to determine
whether wildfires are active or to identify local climate zones. Persistent homology is a branch of topological data analy-
sis that allows one to extract such information in an interpretable way}unlike black-box methods like deep neural net-
works. The purpose of this paper is to explain in an intuitive manner what persistent homology is and how researchers
in environmental science can use it to create interpretable models. We demonstrate the approach to identify certain
cloud patterns from satellite imagery and find that the resulting model is indeed interpretable.

KEYWORDS: Remote sensing; Satellite observations; Artificial intelligence; Classification;
Model interpretation and visualization; Support vector machines

1. Introduction

Methods for image analysis have become an essential
tool for many environmental science (ES) applications to
automatically extract key information from satellite imagery
or from gridded model output (Schultz et al. 2021; Zhu et al.
2017; Gagne et al. 2019; Ebert-Uphoff and Hilburn 2020).
Machine learning (ML) methods such as convolutional
neural networks (CNNs) are now the dominant technique for
many such tasks, where they operate as black boxes (McGovern
et al. 2019). This is undesirable for high stakes applications
(Rudin 2019; McGovern et al. 2022). In this paper, we show
how a tool that is beginning to be used in the community,
namely, topological data analysis (TDA), can be combined
with ML methods for interpretable image analysis. TDA is
a mathematical discipline that can quantify geometric infor-
mation from an image in a predictable and well-understood
way. In section 4d, we give a novel example of how we can

leverage this understanding to give a strong interpretation
of ML results in terms of image features.

TDA has proven highly successful to aid in the analysis
of data in a variety of applications, including neuroscience
(Chung et al. 2009; Gardner et al. 2022), fluid dynamics
(Kramár et al. 2016), and cancer histology (Lawson et al.
2019). In environmental science, TDA has recently shown
potential to help identify atmospheric rivers (Muszynski
et al. 2019), detect solar flares (Deshmukh et al. 2022; Sun
et al. 2021), identify which wildfires are active (Kim and Vogel
2019), quantify the diurnal cycle in hurricanes (Tymochko et al.
2020), identify local climate zones (Sena et al. 2021), detect and
visualize Rossby waves (Merritt 2021), and forecast COVID-19
spread using atmospheric data (Segovia-Dominguez et al.
2021). The purpose of this article is to provide an intui-
tive introduction to TDA for the environmental science
community}using a meteorological application as a guiding
example}and an understanding of where TDA might be ap-
plied. This article is accompanied by easy-to-follow sample
code provided as a GitHub repository (https://github.com/zyjux/
sffg_tda) that we hope will be used by the community in new
applications.
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a. Guiding application: Analyzing the mesoscale
organization of clouds

To provide a gentle introduction to TDA for the ES commu-
nity, we illustrate its use for a practical example. We chose the
application of classifying the mesoscale organization of clouds,
specifically distinguishing four types of organization}sugar,
gravel, fish, and flowers}identified by Stevens et al. (2020).
This task provides an ideal case study for our exploration of
topological data analysis for several reasons: 1) these four orga-
nization patterns are well known from the seminal paper by
Stevens et al. (2020), and meteorological experts were able to
reliably identify these patterns from satellite-visible imagery.
2) The task can be formulated as a classification of patches of
single-image monochromatic imagery, for which a common
TDA algorithm (persistent homology) is well suited. 3) TDA has
never been applied for this application, so it is novel. 4) A well-
developed benchmark dataset with reliable crowdsourced labels
is publicly available for this task (Rasp et al. 2020).

Several ML approaches have already been developed with
good success for this benchmark dataset to classify the four
different types (Rasp et al. 2020). We emphasize that we are
not seeking to match or exceed the performance of those ML
approaches. Rather, we use this application to demonstrate
TDA as an approach that can increase transparency, decrease
computational effort, and be feasible even if few labeled data
samples are available (see section 1c).

b. Key TDA concepts discussed here

In this paper, we focus on the TDA concept that is most
appropriate for image analysis: persistent homology. We will
provide a detailed introduction in section 3 but in this subsec-
tion give a short preview of key concepts to be discussed.

Homology is the classical study of connectivity and the pres-
ence of holes of various dimensions, giving large-scale geomet-
ric information. Persistent homology provides a descriptor with
information on the texture of an image (how rough or smooth it
is), which can be vectorized into a format useful for machine
learning. It does this by scaling through all the intensity values
in an image and recording at what intensities connected compo-
nents and holes appear and disappear. Particularly on images,
persistent homology and its vectorizations can be efficiently
computed, so for image analysis (from models or satellites) the
computational effort of implementing persistent homology is
small.

The results of persistent homology computations can be dis-
played as either persistence diagrams or persistence barcodes.
We focus here on barcodes in which each feature (connected
component or hole) appears as a bar that starts at the intensity
value at which the feature appears and ends at the intensity at
which it disappears. The lengths of these bars indicate the per-
sistence of each feature. The raw output of persistent homology
is not suitable for most machine learning tasks as the output
vector varies in length from sample to sample. While there are
many proposed solutions to this, in this paper we use persis-
tence landscapes, which translate a barcode into a mountain
range, with the height of each mountain representing the persis-
tence of the corresponding feature. The landscape is obtained

from this mountain range by taking the n highest profiles as
piecewise-linear functions, where n is a hyperparameter.

c. Advantages of TDA for image analysis tasks in
environmental science

Persistent homology is a deterministic mathematical trans-
formation (just as, say, the well-known Fourier transform). In
the following, we first explore the advantages that persistent
homology inherits from being a deterministic algorithm:

1) Transparency: All the internal steps of the algorithm are
known and well-understood, and the method has a high de-
gree of theoretical interpretation, giving it far more trans-
parency than most ML methods. In section 4d, we use this
theoretical background to understand what image features
are driving differences in the output of persistent homology.

2) Known failure modes: No technique is perfect, and there will
always be situations that cause errors and incorrect results.
To use a method in practice, it is important to understand in
what situations it struggles and what sorts of errors can
result. Because persistent homology is a deterministic
method, we can both theoretically predict these failure
modes and interpret experimental results in terms of the
original feature space.

3) No need for large, labeled datasets: As a deterministic algo-
rithm, persistent homology does not require large, reliably
labeled datasets. Instead, a small set of representative ex-
amples can be used to explore the different patterns that
emerge in the transformed data. TDA is often used in com-
bination with a simple ML model, and the number of
labeled samples to obtain good performance is smaller than
would be required to train a CNN or similar tool without
TDA. This is a huge advantage for environmental science
datasets, which are frequently large and detailed but almost
entirely unlabeled.

4) Environmentally friendly: Many CNNs for image analysis
tasks are known to have a surprisingly high carbon footprint
due to the extensive computational resources required for
model training (Schwartz et al. 2020; Xu et al. 2021). TDA
is more in line with the Green AI movement (Schwartz
et al. 2020; Xu et al. 2021), as it enables context-driven
numerical results without the environmental impact inher-
ent in training a deep neural network.

Next, we discuss the key abilities that persistent homology
brings to image analysis tasks. These fall into three general
categories: the incorporation of spatial context into a deter-
ministic algorithm, the detection of texture and contrast, and
invariance under certain transformations. The categories are
discussed further below:

1) Incorporating spatial context: Many deterministic algorithms,
aswell as fully connected neural networks, struggle to incorpo-
rate the spatial context inherent in satellite data. Integrating
this spatial context is precisely what motivated the develop-
ment of CNNs, but CNNs are costly to train and chal-
lenging to make explainable. Persistent homology naturally
incorporates spatial context, so patterns that are evident in this
spatial context can be incorporated without resorting to
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CNNs or other spatially informed neural network
architectures.

2) Detection of texture and contrast: Persistent homology
excels at detecting contrast differences}regions (small or
large) that differ from the surrounding average, which
gives a representation of the texture present in an image.
This focus on texture is useful in analyzing satellite weather
imagery, as texture is frequently a key distinguishing factor,
even more than a cloud being a particular shape or size.

3) Invariance to homeomorphisms: The notion of not wanting
to be constrained by a particular geometry brings us to the
final advantage: invariance under a common class of trans-
formations called homeomorphisms (see section 3e).

d. Combining TDA with simple ML algorithms

For some image analysis tasks, TDA methods can be used
as a stand-alone tool, but for the majority of tasks, one would
first use TDA to extract topological features and then after-
ward add a simple machine learning algorithm, as shown in
Fig. 1b. For example, the sample application in section 4 uses
TDA followed by a support vector machine (SVM). TDA can
thus be viewed as a transparent means to construct new, phys-
ically meaningful, and interpretable features that may reduce
the need for black-box machine learning algorithms. Using
TDA in this way can support the goals of creating ethical, re-
sponsible, and trustworthy artificial intelligence approaches
for environmental science outlined in McGovern et al. (2022),
since transparency is a key requirement for ML approaches to
be used in tasks that affect life-and-death decision-making
(Rudin 2019), such as severe weather forecasting.

e. Objectives and organization of this article

As mentioned before, we are not attempting to set a new
benchmark for accuracy in classification nor are we declaring

that this method renders existing techniques obsolete. In-
stead, we seek to raise awareness of a promising technique
with significant potential for ES applications and provide the
reader with a high-level understanding of how TDA works,
what sorts of questions can be asked using TDA, and how the
answers obtained can be interpreted and understood. The
case study in section 4 provides examples of the sorts of ques-
tions TDA can help to address, including reports of negative
examples, that is, situations in which persistent homology is
not able to distinguish between classes, which are as informa-
tive as positive examples in order to understand the best use
of TDA.

The remainder of this article is organized as follows: section 2
discusses in detail the sample application of classifying the
mesoscale organization of clouds. Section 3 provides an intro-
duction to the key concepts of topological data analysis. Section 4
illustrates the use of these TDA concepts for the sample applica-
tion from section 2 in combination with a simple support vector
machine. In particular, in section 4d, we provide a detailed and
novel discussion of the characteristic image-level features that
our combined TDA–SVM algorithm uses to classify. This high-
lights the ability to identify which learned patterns can be
exposed and to discuss these in the original feature space, which
is one of the greatest strengths of persistent homology and
TDA. Section 5 provides an overview of advanced TDA con-
cepts that are beyond the scope of this paper. Section 6 provides
conclusions and suggests future work.

2. Guiding application: Classifying the mesoscale
organization of clouds from satellite data

To illustrate the use of TDA we consider the task of identi-
fying patterns of mesoscale (20–1000 km) organization of
shallow clouds from satellite imagery, which has recently

FIG. 1. Two different ways to extract desired information from imagery: (a) the pure ML approach, in which image
information is extracted by using a complex ML model, typically a deep neural network, and (b) the TDA approach,
in which image information is extracted by using TDA followed by a simpler ML model/method. The latter can lead
to more transparent and computationally efficient approaches.
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attracted much attention (Stevens et al. 2020; Rasp et al. 2020;
Denby 2020). Climate models, because of their low spatial res-
olution, cannot model clouds at their natural scale (Gentine
et al. 2018; Rasp et al. 2018). Since clouds play a major role in
the radiation budget of Earth (L’Ecuyer et al. 2015), the lim-
ited representation of clouds in climate models causes signifi-
cant uncertainty for climate prediction (Gentine et al. 2018).
There has been progress in addressing this limitation from the
climate modeling side, for example, using ML to better represent
subgrid processes (Krasnopolsky et al. 2005; Rasp et al. 2018;
Yuval and O’Gorman 2020; Brenowitz et al. 2020).

A different approach is to build a better understanding of
cloud organization in satellite imagery (Stevens et al. 2020;
Rasp et al. 2020; Denby 2020). One goal is to track the fre-
quency of occurrence of certain cloud patterns across the globe,
reaching back in time as far as satellite imagery allows, to better
understand changes to the underlying meteorological conditions.
To this end, in 2020 a group of scientists from an International
Space Science Institute (ISSI) international team identified the
primary types of mesoscale cloud patterns seen in Moderate Res-
olution Imaging Spectroradiometer (MODIS; Gumley et al.
2010) true color satellite imagery, focusing on boreal winter
(December–February) over a trade wind region east of Barba-
dos (Stevens et al. 2020). Using visual inspection they identified
four primary mesoscale cloud patterns, namely, sugar, gravel,
fish, and flowers (shown in Fig. 2).Subsequent study of these four
cloud types using radar imagery (Stevens et al. 2020) and median
vertical profiles of temperature, relative humidity, and vertical
velocity (Rasp et al. 2020) indicate that the four cloud types occur
in climatologically distinct environments and are thus a good
indication of those environments.

While humans are fairly consistent at recognizing these four
patterns after some training, it is difficult to describe them objec-
tively so that a machine can be programmed to do the same.
Deep learning offers a potential solution; however, most deep
learning approaches require a large number of labeled images to
learn from.

a. Approaches for dealing with lack of labeled samples

Rasp et al. (2020) solve the lack of labeled data for this appli-
cation by a crowdsourcing campaign using a two-step process.
First, they developed a crowdsourcing environment and recruited
experts to label 10000 images. Experts used a simple interface to
mark rectangular boxes in the imagery and label them with one
of the four patterns. The labeled dataset enabled the use of
supervised learning algorithms as a second step, that is, the algo-
rithms were supplied with pairs of input images and output labels
and then trained to estimate output labels from given imagery.
Two types of supervised deep learning algorithms were devel-
oped: one for object recognition and one for segmentation. Both
algorithms performed well (Rasp et al. 2020).

In contrast, unsupervised learning approaches seek to develop
models from unlabeled data samples. Clustering}which divides
unlabeled input samples into groups that are similar in some
way}is a classic unsupervised learning algorithm. For example,
Denby (2020) trained an unsupervised deep learning algorithm,
in combination with a hierarchical clustering algorithm, for a

closely related application, namely, grouping image patches
fromGeostationary Operational Environmental Satellite (Schmit
et al. 2017) imagery into clusters of similar cloud patterns. Their
algorithm identified a hierarchy of clustered mesoscale cloud pat-
terns, but since the classes of cloud patterns were generated by a
black-box algorithm rather than by domain scientists, their mean-
ing is less understood than the four patterns from Rasp et al.
(2020). Indeed, a necessary step that comes after the unsuper-
vised learning is to test whether the patterns identified by an al-
gorithm correspond to climatologically distinct environments and
if so which ones.

TDA is an alternative approach to address the lack of labels.
With TDA we seek to match imagery to the original four clas-
ses identified by Stevens et al. (2020), yet only require a small
number of labeled samples. We map patches of the MODIS
imagery into topological space and then investigate whether
there are significant differences in the topological properties
that we can leverage to distinguish the patterns. TDA can thus
be viewed as a means of sophisticated feature engineering, giving
new, physically meaningful topological features. Our motivation is
that this approach would allow us to identify the well-established
patterns from Stevens et al. (2020) but with two key differences:
1) this approach does not require a large number of labels (less
crowdsourcing required) and 2) this approach is more transpar-
ent than the supervised [such as Rasp et al. (2020)] and unsu-
pervised [such as Denby (2020)] deep learning approaches,
since topological properties can be understood intuitively.

We note that TDA can also be used in an unsupervised fash-
ion similar to the approach of Denby (2020), only with more
transparency and computational efficiency. On its own, TDA
provides an embedding of the image data. However, rather than
the embeddings being a learned property of a neural network
whose properties can only be inferred after it is trained, and then
only with difficulty, the TDA embedding is deterministically
based on topological properties of the image. For this primer,
however, we focus on the supervised task of identifying the previ-
ously established patterns of Stevens et al. (2020).

b. Dataset details and preprocessing

The dataset from Rasp et al. (2020) provides approximately
50 000 individual cloud-type “annotations” (where each anno-
tation is a rectangle placed on an image surrounding a particu-
lar cloud type) on around 10 000 base images. To evaluate the
quality of these crowdsourced annotations, Rasp et al. (2020)
used a comparison of intersection-over-union (IOU) scores
(also known as the Jaccard index; Jaccard 1901; Fletcher and
Islam 2018) between annotators analyzing the same image,
and their analysis indicated that these annotations were gen-
erally of high quality. See Fig. 2 for examples of these cloud
types. In general, sugar-type clouds are small, relatively uni-
formly distributed clouds; gravel-type clouds are somewhat
larger than sugar clouds and tend to show more organization;
flowers-type clouds are yet larger clouds that clump together
with areas of clear sky between; and fish-type clouds form dis-
tinctive mesoscale skeletal patterns. Each image in the dataset
is a 148 3 218 (latitude–longitude) visible color MODIS image
from the Terra or Aqua satellite. On these images, annotators
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FIG. 2. Examples of the four cloud types from the sugar, flowers, fish, and gravel dataset from Rasp et al. (2020). Note that Rasp et al.
(2020) use the term “flower,” whereas we follow Stevens et al. (2020) in referring to this type as the plural “flowers.” Image credit: Figure
1 in Rasp et al. (2020), ÓAmerican Meteorological Society. Used with permission.
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could draw rectangular annotations encompassing a single cloud
type and could apply as many annotations to each image as they
desired, so long as each annotation encompassed at least 10% of
the image.

As we will discuss later, persistent homology takes as its input
a space with an intensity value at each point, which in our case
corresponds to a grayscale image. The MODIS images in the
dataset from Rasp et al. (2020) were NASA Worldview true
color images in red–green–blue (RGB; Gumley et al. 2010),
which we converted to grayscale using the python package pil-
low, which uses the International Telecommunication Union
Radiocommunication Sector (ITU-R) BT.601-7 luma transform
(ITU-R 2011) for computing intensity from RGB input:

I 5 0:299R 1 0:587G 1 0:114B:

This is a transform originally developed for television broad-
casting and approximates the overall perceived brightness for
each pixel, which is appropriate here as the NASAWorldview
true color images are a close approximation of what a human
observer in orbit would see. We note that this is a difference
between our work and that of Rasp et al. (2020), because they
used the RGB images throughout.

3. Introduction to topological data analysis

In this section, we provide a brief introduction to relevant
mathematical topics. For more details, we refer readers to
Carlsson (2009), Ghrist (2008), and Edelsbrunner and Harer
(2010).

a. Topology

In the broadest sense, topology is the study of the fundamen-
tal shapes of abstract mathematical objects. When we speak of
the “topology” of an object, we speak of properties that do not
change under a smooth reshaping of the object, as if it is made
of a soft rubber. Some example properties include how many
connected components the object contains, how many holes or
voids it contains, and in what ways the object loops back on
itself. In this paper, we focus on the first two properties: con-
nectivity and holes.

b. Homology

Homology is one of the tools from topology that focuses
on connectivity and holes. The d-dimensional homology Hd

(for d 2 Z$0) counts the number of d-dimensional holes (or
voids) in that object. For d 5 0, the 0-dimensional homology
H0 captures the number of connected components present
in an object. For d $ 1, the homology Hd captures holes: a one-
dimensional hole is one that can be traced around with a one-
dimensional loop (like a loop of string), while a two-dimensional
hole is a void. As shown in Fig. 3, these holes and the surround-
ing surface need not be circular. Because homology is only inter-
ested in counting the presence of these features, it is invariant
under any transformation of the space that does not create or
destroy any holes or components. In our application of grayscale
images, no holes of dimension two or larger can exist, as that
would require a dataset that is at least three-dimensional.

c. Persistent homology

Whereas homology focuses on global features of the space,
there is an extension}known as “sublevelset/superlevelset
persistent homology”}that captures more small-scale geome-
try (Edelsbrunner and Harer 2010). Superlevelset persistent
homology is the primary tool from TDA that we use in this
paper, because it gives the best descriptor of image texture.

For an example of superlevelset persistent homology being
computed on a simple surface, see Fig. 4. The input to superle-
velset persistent homology is a d-dimensional space plus an in-
tensity value at every point. In our example, this is a grayscale
image with two spatial dimensions (d 5 2) with the pixel values
as intensities. This input is then converted into superlevelsets:
each superlevelset is a binary mask of the original space, in
which only points that have an intensity value greater than a
particular cutoff value have been included. As this cutoff value
sweeps down from the maximum intensity, the homology of
each superlevelset is computed and the cutoff values at which
homological features (connected components, holes) appear
and disappear are tracked.

For our example, this means that as the cutoff value decreases,
more and more pixels with gradually decreasing intensities are
included in the superlevelsets, and we track the connected com-
ponents and holes that appear and disappear. Because we are us-
ing superlevelsets in which we start by including the highest
intensities, we can view connected components appearing at
high-intensity value as being analogous to cloud tops, which are
typically brighter, and holes as darker regions within these bright
clouds.

This added interpretability motivates our focus here on
superlevelset persistent homology, which is a simple variation
(reflection) of the more commonly used sublevelset persistent
homology. Sublevelset persistent homology is computed the
same way but instead of each set including all the pixels with in-
tensities above the cutoff value, pixels with intensities below the
cutoff value are included, and the cutoff value is viewed as
sweeping from low intensities up to high intensities. Throughout
this paper, we will frequently omit the prefix “superlevelset” in
“superlevelset persistent homology” and simply use “persistent
homology” to refer to this technique}this should not be con-
fused with the persistent homology technique, which takes as its
input a cloud of data points (Carlsson 2009).

In practice, it is not necessary to compute the homology for
infinitely many superlevelsets; there are algorithms that discre-
tize the data and then use linear algebra to implement this
computation efficiently. These implementations are fast for

FIG. 3. Three shapes that each have the same homology}a sin-
gle connected component, a single one-dimensional hole, and no
higher-dimensional holes.
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low-dimensional data (e.g., the two-dimensional grayscale
images used in our guiding example) but become more resource
intensive when the input space consists of higher-order tensors.
In this work, all homological and other TDA computations were
performed using the GUDHI software package in Python (Maria
et al. 2014).

d. Persistence barcodes and diagrams

There are two main ways to display the output of persistent
homology: persistence barcodes (Fig. 4f) and persistence dia-
grams (Fig. 4g).

In a barcode, each homological feature that appears is repre-
sented by a horizontal bar, which stretches from the cutoff value
at which the corresponding feature first appears (is born) to the
value at which it disappears (dies). Because we are using

superlevelset persistent homology, our cutoff values are decreas-
ing; thus, the intensity values on the x axis are decreasing from
left to right. The persistence of each feature is the length of its
bar. To distinguish between different homological classes, we
color the bars depending on what dimension the homological
feature is. We use red bars for zero-dimensional features
(connected components) and blue bars for one-dimensional
features (holes). The y axis of a persistence barcode counts
the number of bars, typically ordered by birth value.

A persistence diagram contains the same information as a
persistence barcode but represents each feature as a point
rather than as a bar. In persistence diagrams, both the x axis
and y axis represent intensity. The x coordinate of this point is
given by the birth cutoff value, while the y coordinate is the
death cutoff value. Because features always die at a higher

FIG. 4. (a) A grayscale image ranging between intensity 0 for black and 255 for white, and four superlevelsets from (a) at cutoff values
(b) 209, (c) 151, (d) 94, and (e) 10. The pixels included in the superlevelsets are colored white. (f) The persistence barcode for (a), with
vertical lines from left to right indicating the intensities corresponding to the four superlevelsets in (b)–(e). (g) The equivalent persistence
diagram. In the barcode, diagram, and landscape, red elements (bars, points, and lines, respectively) indicate connected components
(H0 features) and blue elements indicate one-dimensional holes (H1 features).
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cutoff value than they are born, all points lie above the diago-
nal line y 5 x. The persistence of a feature is represented by
how far a persistence diagram point lies above the diagonal.
We present persistence diagrams here to familiarize the reader
with their use in, for example, Kim and Vogel (2019), Tymochko
et al. (2020), and Sena et al. (2021), but for our case study we
focus on barcodes and landscapes.

In persistent homology, there are features that have infinite
persistence}features that are born at a particular intensity
but never die. The most common example of this is that the
first connected component to appear will eventually become
the only remaining connected component, as all other compo-
nents eventually merge into it at high enough cutoff values.
These infinite persistence points are represented as infinite
bars (rays) in persistence barcodes, stretching out of the frame
to the right and as infinite points appearing on a special “1‘”

line in persistence diagrams.

e. How to read and interpret persistence barcodes

To demonstrate how to read a persistence barcode we return
to Fig. 4. The four vertical lines in the barcode in Fig. 4f corre-
spond to the four superlevelsets in the middle row, where white
pixels show regions included in the superlevelset. In Fig. 4b, we
see the first connected component appear, corresponding to the
top, infinite-length red bar in the barcode. In Fig. 4c, two small
components in the lower corners appear, corresponding to the
two short red bars in the barcode crossed by the second vertical
line. The short length of these bars indicates that these compo-
nents are short lived, and soon merge into the larger component.
In Fig. 4d, we see both the central one-dimensional hole, which
corresponds to the blue bar, and the connected component
within that hole, which corresponds to the red bar that is about
to end near the third vertical line in the barcode. In Fig. 4e, we
see almost the entire image is in the superlevelset, because the
cutoff value is very small. However, the upper two corners
have just been included as two new components, which are
even shorter lived than the lower-corner components, as indi-
cated by their extremely short red bars.

The first thing to notice about this barcode is that there are
relatively few red bars, apart from the infinite-length bar, and
those bars are very short. This indicates that few connected
components appear and disappear as we scale through intensity
values and thus the base image is very smooth. There is one red
bar of reasonable length, so we would expect there to be one
somewhat significant “bump,” a bright region surrounded by
darker regions, which is precisely what we see in the middle of
Fig. 4a. We also notice that there is one relatively long blue bar,
which tells us that there is a hole (dark region surrounded by
brighter regions), which persists for a relatively wide range of
intensities.

Persistent homology is invariant under homeomorphisms of
the input space, which are continuous deformations with continu-
ous inverses (see Fig. 5). Examples include all the rigid motions
of the plane (rotation and translation), affine transformations
(scaling, skewing, etc.), as well as more radical reshapings, so
long as no “ripping” occurs. Superlevelset-persistent homology is
invariant over all such transformations. So, a cloud that has been

reshaped, expanded, and moved, but which retains the same
overall texture as in its original incarnation would have the same
superlevelset persistence barcodes. See section 5 for some brief
comments on versions of persistent homology that can distin-
guish between such different deformations of an image.

f. Persistence landscapes

Persistence barcodes and diagrams have a drawback: they
are not always convenient inputs for use in machine learning
tasks, as described by Bubenik (2015), Adams et al. (2017),
and Mileyko et al. (2011), since they do not naturally live in a
vector space. To deal with this, we use persistence landscapes
to summarize and vectorize the persistence diagram (Bubenik
2015). A persistence landscape is a collection of piecewise-
linear functions that capture the essence of the persistence
diagram.

An example of a persistence landscape computed from a small
persistence barcode is shown in Fig. 6. We separate out a particu-
lar homological dimension (e.g., H0 or H1) and remove any infi-
nite bars and then create a new figure containing a collection of
isosceles right triangles with hypotenuses along the x axis, one
for each bar in the barcode. These triangles are scaled so that the
triangle corresponding to a bar is the same width as that bar. We
view this collection of triangles as a “mountain range” and begin
to decompose it into landscape functions. The first landscape
function is the piecewise-linear function that follows the upper-
most edge of the union of these triangles, that is, it is the top
silhouette of the mountain range. To compute the next landscape
function, we delete the first landscape function from the moun-
tain range and then find the piecewise-linear function that follows
the uppermost edge of this new figure at every point, and so forth
for the further landscape functions. This collection of piecewise-
linear functions is the persistence landscape. The x axis still repre-
sents intensity, and the height of each peak is proportional to the
length of the bar from which it came and is thus a measure of
persistence.

This representation is stable}small changes to the input
will only result in small changes in the persistence landscape
(Bubenik 2015). While the entire persistence landscape deter-
mines a persistence barcode exactly, in our work we retain only
the top several persistence landscape functions, which means
that we obtain a descriptive summary capturing the information
of high-persistence points but ignore some information about
low-persistence points.

To compute landscapes, we once again use the GUDHI
software package running in Python (Maria et al. 2014).

g. How to read and interpret persistence landscapes

We now look at a realistic example in Fig. 7. Reviewing the
barcode in Fig. 7b, we first notice two red bars with high persis-
tence: the infinite bar as well as another that stretches nearly all
the way across the barcode. This indicates that there are two
high-intensity regions that are separated by a dark region. Over
middling intensities, there are few bars, indicating that outside
the two bright regions we already identified, there is little going
on. Finally, when we get to lower intensities (darker regions),
there are many short bars, representing subtle variations in the
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dark regions. This information, however, is somewhat hard to
read in a barcode with as many bars as this. Thus, we turn to
landscapes as a way to summarize this information in a more
readable format.

In the landscape in Fig. 7d, the single, tall, red mountain
indicates that the original image (Fig. 7a) contains two con-
nected components that persist over a large range of intensity
levels (as the infinite-persistence component is implicit in the
landscape). The only blue mountains in the landscape are much
smaller than the red mountains and are mainly to the right of
them. This indicates that while the original image contains
numerous holes within the connected components, they
only appear near the bottom end of the intensity range, that
is, the holes do not appear until we have started including
relatively dark regions. As an example, consider the single
extremely dark pixel in the upper left-hand corner adjacent
to the bright clouds and surrounded by a moderately dark
region. This hole contributes a moderately tall blue peak far to
the right in the landscape, as it does not appear until the rela-
tively dark region surrounding it is included into the bright adja-
cent component, but it will not fill in until the nearly black pixel
in the middle of the hole is included.

In general, high-persistence features (long bars, tall mountains)
give information about large-scale features}the presence of two

bright clouds in Fig. 7a, for example. On the other hand, low-
persistence features (short bars, small mountains) give informa-
tion about texture. In Fig. 7, the short bars and small mountains
appearing at lower intensity values indicate that the background
darkness in the image is relatively noisy rather than being uni-
formly black or smoothly graded. The few small blue mountains
in Fig. 7d indicate that the bright clouds also contain some
textural elements}regions of slightly darker cloud within
brighter regions.

4. Environmental science satellite case study

Now that we have established the basic theory of TDA, we
return to its application to classifying mesoscale clouds.

a. Adapting persistent homology to this dataset

We want to use persistent homology and landscapes to
compare the clouds present in the rectangular annotations on
images in the dataset of Rasp et al. (2020), so we need to find
a consistent vector representation for these annotations.
While the overall images in the dataset are of consistent size
(1400 3 2100 pixels), the annotations are not. An annotated
region covering more area has inherently more complexity,
which would yield a barcode with more bars (and thus a

FIG. 5. Examples of deformations that all result in the same persistence barcode: (a) the original
image and the transformations: (b) scaling, (c) rotation, (d) translation, (e) uneven scaling,
(f) shearing, and (g),(h) general homeomorphisms.
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different vector representation) than a smaller annotation. To
account for this, we implemented a subsampling routine,
which is illustrated in Fig. 8. For each annotation, we randomly
chose six 96 3 96 pixel regions (the subsamples) and computed
their persistence landscapes individually. This is shown in
Figs. 8a–c. Each landscape consisted of 10 piecewise-linear
functions: 5 giving information on connected components
(plotted in red) and 5 giving information on one-dimensional
holes (plotted in blue). The height of each function was re-
corded at 200 evenly spaced locations along the intensity axis,
giving a vector of length 200 representing that function. These
10 vectors of length 200 were concatenated to yield a vector of
length 2000 (i.e., a point in R

2000), representing the persistence
landscape of that particular subsample. This vectorization is
shown in Fig. 9. At that point, the persistent homology of each
annotation was represented by a small-point cloud of six points
in R

2000, one for each of the subsamples. To obtain a single point
to represent the annotation, we took the geometric vector aver-
age of the six points in the point cloud, giving us the single vector
that we can use to compare and analyze our annotations. Addi-
tionally, we can display and interpret this average vector as a
landscape, in that it can be displayed as 10 functions, 5 represent-
ing the persistence and intensity ranges of connected components
and 5 representing the same for one-dimensional holes. This av-
eraged landscape is visualized in Fig. 8d. In particular, we can
view (for instance) the first 200 values of the average landscape
vector as the heights of the first average landscape function at
the 200 evenly spaced intensity values where we sampled the

piecewise landscape functions. We can view these values as
coming from two equivalent formulations: first, as described
above, as coming from a pointwise vector average, or second,
by taking the average height of the first piecewise landscape
function at each of the 200 evenly spaced intensity values
across the six subsamples.

b. Dimensionality reduction and adding a simple
machine learning model to build a classifier

Once we obtained vectorized representations of each annota-
tion, we sought to visualize the dataset. Because R2000 is not visu-
alizable, we applied a dimensionality reduction algorithm to yield
a representation that we can plot. We used principal component
analysis (PCA), as it is a widely used and relatively simple tech-
nique, which in our case produced quite good results. We found
that patterns in the data were visible upon projecting down onto
the first three principal components, which captured over 90% of
the variation in the high-dimensional data. We also note that the
principal component vectors from repeated random samplings
were extremely consistent, indicating that our projections were
quite stable.

Once the data were projected down to three dimensions, we
could visualize the data as a point cloud, with points colored
according to which cloud pattern they represent. As a note,
the PCA algorithm was entirely unsupervised with regard to
these cloud pattern labels; it used only the vectorized repre-
sentation of the persistence diagram.

FIG. 6. The process of computing a persistence landscape from a barcode. Beginning with (a) the barcode (which
already has the infinite bar removed), we (b) raise a “mountain” above each bar to obtain the “mountain range.”
Our first persistence landscape function is the piecewise-linear function that follows the highest edges of the moun-
tain range in (b) [shown as the solid line in (c)], and (c) the next function is obtained by deleting in (b) the lines corre-
sponding to this first function and then finding the piecewise-linear function that follows the highest edges of this modi-
fied mountain range in (b) (the dotted line). Further landscape functions are computed similarly by deleting previous
functions in (b) and tracing along the highest remaining edges. In (c), only the first three landscape functions are shown.

ART I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 210

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:24 PM UTC



We analyzed each of the six pairs of classes separately by
training an SVM (Boser et al. 1992) to find the plane that best
separates the two classes of projected data in three dimensions.
We considered running the SVM on the high-dimensional data,
but initial testing indicated that this tended to overfit the data
and actually resulted in reduced classification performance.
The SVM was trained on a random sample of 350 annotations
of each class, then performance metrics were computed for a
test set of 200 random annotations of each class. For visualiza-
tions of the test data and SVM separating plane as well as per-
formance metrics for each of the six pairwise comparisons, see
Fig. 10.

c. Results: What initial patterns emerged from applying
persistent homology?

Overall, the projected points separated well, with one no-
table exception. We began our investigation by comparing
the sugar versus flowers patterns, because these are visually
the most dissimilar (Fig. 2). As expected, these classes had the
most distinct separation out of the six possible pairs, as seen in
Fig. 10a. While the separation was not perfect, most of the
error comes in the form of some intermingling near the
separating hyperplane. The performance of the algorithm in
separating these classes was striking, given that only a small,

FIG. 7. (a) A 32 3 32 sample image from the grayscale MODIS imagery used in the sugar, flowers, fish, and gravel
dataset, along with its (b) persistence barcode, (c) persistence diagram, and (d) persistence landscape with the first
five piecewise-linear functions for each of theH0 andH1 classes.
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random subset of each annotation was included and that the
PCA projection algorithm was entirely blind to the data labels.
This example is a clear indicator of the potential that persistent
homology has to usefully extract textural and shape differences
in satellite imagery.

While not quite as exceptional, the flowers and gravel patterns
also separate well, as seen in Fig. 10c. There is again a degree of
intermingling near the separating plane and in this case that
intermingling extends a bit farther to either side. This is what we
would expect, based on the visual presentation of the cloud
regimes; the gravel class falls somewhere between sugar and
flowers in terms of cloud size and organization.

We begin to see the algorithm struggle a bit more when we
attempt to separate the sugar regime from the gravel regime.
As we can see in Fig. 10e, the intermingling of data points
stretches throughout the point cloud, although there is still a
difference in densities between the classes on either side of
the separating hyperplane.

However, there are two classes that are effectively indistin-
guishable by this algorithm: the flowers and fish patterns. The
plot of these points can be seen in Fig. 10f, and it is apparent that
there is no effective linear separator between these classes. While
there is a “separating” hyperplane plotted, it is much less rele-
vant in this case than in the others; the data points are remark-
ably evenly mixed. This proved to be the case even when more
principal components were included. A potential explanation for

why the algorithm struggles so much with this task is that the dis-
tinguishing features of fish versus flowers are simply too large
scale for the subsampling technique to pick up on. The fish
pattern is characterized by its mesoscale skeletal structure,
particularly in its difference from the flowers regime, which
is more randomly distributed. This mesoscale organization
is simply not visible to the subsamples, as the 96 3 96 patches
are too small to detect that skeletal structure. Future analyses
could include using larger patches to better capture these fea-
tures and perhaps distinguish between these classes more effec-
tively. We also note that in Rasp et al. (2020), the fish pattern
was the most controversial among the expert labelers, so it is
perhaps not surprising that our algorithm also struggles.

When we look at fish versus sugar and fish versus gravel in
Figs. 10b and 10d, respectively, we can see how similar these
plots appear to those in Figs. 10a and 10c, in which the flowers
pattern was compared with sugar and gravel. This similarity is
made even more remarkable by the fact that the sugar samples
in these plots were drawn separately rather than being reused for
the pairwise comparisons (and similarly for the gravel samples).
While the algorithm is not doing well at distinguishing between
fish and flowers, we can at least see that its behavior is consistent:
fish and flowers are projected similarly into the 3D embedding
space, so they compare similarly to the other classes.

Overall, this case study suggests that it is possible to use persis-
tent homology to quantify and understand the shape and texture

FIG. 8. An illustration of the annotation and subsampling process: (a) a full 148 3 218 image, with an example fish annotation outlined
in blue, with the subsample boxes outlined in various colors inside, (b) an enlarged view of this annotated region, including the same
color-coded subsamples, (c) the corresponding landscapes for each subsample, and (d) the resulting averaged landscape.
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of satellite cloud data. While there are cases where the algorithm
struggles, these are understandable in terms of the visual task be-
ing requested and are internally consistent from sample to sam-
ple. Moreover, in the cases where the algorithm does well, it
does so consistently across repeated samples and suggests that
when these tools are appropriately applied, excellent results can
be obtained from very limited sample sizes.

d. A novel interpretation method: Deriving
interpretations in terms of weather and homology

As an example of how this separation can be interpreted,
we examine the case of sugar versus flowers. Recall that in
Fig. 10a, we saw that this pair of classes had the strongest sep-
aration in the dataset.

To begin, we explore what can be learned just from the sum-
marized data, without looking at examples. To discover what
the separating plane between sugar points and flowers points
represents, we create “virtual” landscapes. We first lift the sep-
arating plane in R

3 to the hyperplane in R
2000 consisting of all

the points that project (under PCA) into the separating plane
in R

3. Next, we find the line normal to this hyperplane that
passes through geometric center of the data. Finally, we choose
points on this line that fall at the outer extent of the data point
cloud. These points live in the landscape embedding space
R
2000 but are not sampled data points. However, by applying

the inverse landscape embedding, we can visualize the land-
scape-like set of curves that would give this embedded point.
Virtual landscapes for sugar and flowers can be seen in
Figs. 11c and 11f, respectively.

An advantage of this approach is that it synthesizes trends
from the real data into a readable, controllable format that
demonstrates how SVM is separating these classes. When we
compare these virtual landscapes with the actual landscapes

farthest from the separating hyperplane (seen in Figs. 11b,e),
we can see that the virtual landscapes are smoother but that
the overall shapes are remarkably similar.

We can also interpret the shapes of these landscapes in terms
of the features present in the images. Let us examine the images
and corresponding landscapes in Fig. 11. The most prominent
feature in the two landscapes is the tall red peak in the sugar
landscape, shown in Fig. 11b. Recall that the red lines denote
zero-dimensional homology (connected components), while the
blue lines denote one-dimensional homology (holes). This red
peak represents the presence of strongly persistent connected
components, that is, separated regions of bright cloud strongly
contrasting against a much darker background. The sharpness of
this peak also indicates that these features are similar in both the
intensity of the cloud top and the intensity of the surrounding
background. The comparatively low blue curves with only a small
peak at the end indicate a lack of one-dimensional homological
features (holes), and thus the texture within connected compo-
nents is relatively uniform. Looking at the image in Fig. 11a, we
see these observations borne out: there are numerous small
clouds of similar brightnesses, which stand in stark contrast to
the overall uniformly dark background, matching the tall H0

peak. Because these clouds are relatively small, there is little dis-
cernible texture within each cloud, which corresponds to the rela-
tive absence ofH1 features.

On the other hand, the flowers landscape in Fig. 11e displays
a lower red peak, with more separated curves. This lack of con-
centration indicates that there is more variation in the intensity
values at which connected components appear (the brightest
part of the component) and at which they merge together (the
intensity of the bridge connecting that component to another),
while the lower height indicates that these features are overall
less persistent}they merge into one another more rapidly.

FIG. 9. A cartoon showing the sampling and concatenation of a persistence landscape into a vector. In this figure, we see the landscape,
each landscape function individually, and the process of sampling each landscape function evenly and then concatenating the results into a
single vector v.
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Additionally, there is a much stronger H1 signal in this case
than in the sugar landscape, meaning that the connected com-
ponents have more internal texture, with numerous holes ap-
pearing and disappearing over a wide range of intensity values.
These observations match with what we see in Fig. 11d. The
clouds in this image are much larger and cover more of the
frame, with varying intensities within and between the clouds,
leading to the more variedH0 landscape. This image also shows
much more internal texture to the clouds, with far more of a
dimpling effect than in the sugar example.

In summary, this example shows how the patterns learned
by the TDA–SVM algorithm can be translated back to homo-
logical features which in turn correspond to weather-relevant
features in the original image. This is made possible by the fact
that the SVM model can be represented by a single separating
plane, which can be translated back into the space of persis-
tence landscapes and then interpreted, yielding a highly inter-
pretable approach to the pairwise classification problem.

e. Comparison of this classifier with those in
Rasp et al. (2020)

1) ACCURACY

The accuracy of our approach cannot be directly compared
with the deep learning algorithms in Rasp et al. (2020) because
they address different tasks. The task considered here is to
choose a single class (out of two) for an annotation assumed to
consist of a single cloud type based on several small patches
(96 3 96 pixels). In contrast, the task considered in Rasp et al.
(2020) is much more complex, namely, to assign one or more la-
bels for an annotation based on a very large image. We choose
the simpler task for our TDA approach in order to expose the
properties of a TDA algorithm, and trying to implement a multi-
label assignment (e.g., by using a sliding window approach) likely
would have made this exploration more complicated without
providing new insights. However, even without a direct compari-
son, it is obvious from the results that this first TDA–SVM

FIG. 10. Plots of the embedded landscape test points for each pairwise combination: (a) sugar vs flowers
(89.25%), (b) fish vs sugar (86%), (c) flowers vs gravel (81%), (d) fish vs gravel (79.5%), (e) sugar vs gravel
(71.25%), and (f) fish vs flowers (57%). Flower points are red, sugar points are yellow, gravel points are green,
and fish points are blue, with color representing the class assigned in the crowdsourced dataset in Rasp et al.
(2020). The SVM separating plane for each pair is shown in wireframe, and the percentage of correctly classified
points for each combination (test performance) is reported in parentheses earlier in the caption.
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approach cannot nearly achieve the accuracy of the deep learning
approaches.

2) REQUIRED DATA SAMPLES

Our approach only requires a few hundred labeled data
samples to develop a classifier. This reduces the required label-
ing effort by two orders of magnitude relative to the tens of
thousands of labeled samples in Rasp et al. (2020).

3) COMPUTATIONAL EFFORT

Computations were performed on a Surface Pro 6 computer
with an Intel Core i5-8250U CPU. The computational bottle-
neck in this case was computing the persistent homology: for
800 samples (and therefore 4800 subsamples to compute persis-
tent homology for), approximately 45 min of wall-clock time
was required. This is already much less computational time
than is generally required to train a deep network, and it is
likely that this could be significantly improved by parallelizing,
because each sample can be processed entirely separately.

4) INTERPRETABILITY AND FAILURE MODES

Our approach yields a highly interpretable model that pro-
vides an intuitive explanation of how the algorithm distin-
guishes different classes, while the deep learning methods do
not. Furthermore, the interpretation of the separation plane
in our model makes it easy to provide insights into failure

modes, that is, which types of mesoscale patterns can be easily
or not so easily be distinguished by their topological features,
and thus by this approach.

5. Advanced TDA concepts

In this section, we briefly discuss and provide references for
some advanced TDA concepts that are beyond the scope of
this article, along with motivations for when and why readers
might find them useful.

Figure 5 shows that while persistent homology measures
some spatial aspects of the intensity function, it is also invariant
under nice deformations (“homeomorphisms”) of the domain.
However, there is another (very popular) type of persistent
homology, constructed using growing offsets of a shape, or
unions of growing balls, that distinguishes between different
deformations of the domain (Carlsson 2009; Ghrist 2008). We
expect that this variant of persistent homology will also find
applications in atmospheric science, and we refer the reader to
Tymochko et al. (2020) for such an example.

We are particularly interested in exploring the use of TDA
to analyze cloud properties from satellite imagery, for exam-
ple, to detect convection. While the example here looked at
large-scale organization of clouds, to analyze properties like
convection we would zoom far into a single cloud and analyze
its texture, for example, seek to identify whether there is a
“bubbling” texture apparent in a considered area of the cloud.

FIG. 11. The (a) sugar and (d) flowers samples farthest from the separating hyperplane (most extreme example) and (b),(e) their respective
landscapes. Also shown are the “virtual” (c) sugar and (f) flowers landscapes obtained by traveling along the line normal to the separating
hyperplane.
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Preliminary analysis leads us to believe that it might be neces-
sary to use more sophisticated TDA tools for this purpose than
discussed here, such as vineyards (Cohen-Steiner et al. 2006) or
“contour realization of computed k-dimensional hole evolution
in the Rips complex (CROCKER)” plots (Topaz et al. 2015),
which incorporate temporal context by analyzing the topolog-
ical properties of sequences of images rather than individual
images.

We have considered persistent homology that varies over
a single parameter}the intensity of the satellite image.
However, one frequently encounters situations in which two
or more parameters naturally arise. For example, one can per-
form superlevelset persistent homology on a two-channel im-
age, containing the intensities with respect to two frequencies,
with respect to the parameter from either the first channel or
the second. In these contexts, multiparameter persistence
(Carlsson et al. 2009; Carlsson and Zomorodian 2009; Cerri
et al. 2013; RIVET Developers 2020) allows one to consider
both parameters at once, even though the underlying mathe-
matics is more subtle, and computations are more difficult. A
version of multiparameter persistence was applied recently to
the atmospheric domain in Strommen et al. (2023).

Persistence barcodes and diagrams are not ideal as inputs
into machine learning algorithms because they are not vectors
residing in a linear space. This is evidenced by the fact that aver-
ages of persistence diagrams need not be unique (Mileyko et al.
2011). There is a wide array of options for transforming persis-
tence diagrams for use in machine learning, including not only
persistence landscapes (Bubenik 2015) but also persistence im-
ages (Adams et al. 2017) and stable kernels (Reininghaus et al.
2015), for example. TDA has been gaining traction in machine
learning tasks as more tools become available to integrate it
into existing workflows in both neural network layers (Moroni
and Pascali 2021) and loss functions (Clough et al. 2020). As an
example application, TDA has recently been used to compare
models with differing grids and resolutions (Ofori-Boateng et al.
2021).

There is a variant of superlevelset persistent homology called
extended persistent homology (Edelsbrunner and Harer 2010,
their section VII.3), which performs two sweeps (instead of just
one) over the range of intensity values. Extended superlevelset
persistent homology detects all of the features measured by
superlevelset persistent homology, plus more. It may be the
case that one can extract more discriminative information from
a satellite image by instead computing the extended persistence
diagram.

6. Conclusions and future work

The primary contributions of this paper are as follows:
1) It presents, to the best of our knowledge, the first attempt
to provide a comprehensive, easy-to-understand introduc-
tion to popular TDA concepts customized for the environ-
mental science community. In particular, we seek to provide
readers with an intuitive understanding of the topological
properties that can be extracted using TDA by translating
cloud imagery into persistence landscapes, interpreting the
landscapes, then highlighting the topological properties in

the original images. 2) In a case study, we demonstrate step
by step the process of applying TDA, combined with a simple
machine learning model, to extract information from real-world
meteorological imagery. The case study focuses on how to use
TDA to classify mesoscale organization of clouds from satellite
imagery, which has never been addressed by TDA before.
3) The most novel contribution is the interpretation proce-
dure we developed that projects the class separation planes
identified by the SVM algorithm back into topological space.
This, in turn, allows us to fully understand the strategy used by
the classifier in meteorological image space, thus providing a
fully interpretable classifier.

In future work we seek to explore several of the advanced
methods outlined in section 5. We believe that there are many
applications to be explored with TDA, including the applications
suggested by Rasp et al. (2020) for their methods, namely,
“detecting atmospheric rivers and tropical cyclones in satellite
and model output, classifying ice and snow particles images ob-
tained from cloud probe imagery, or even large-scale weather
regimes” (Rasp et al. 2020). Furthermore, as discussed in
section 1, TDA has already been shown to be useful to iden-
tify certain properties of atmospheric rivers, wildfires, and
hurricanes, and we expect TDA to find additional use in those
areas as well. Our group is particularly interested in using TDA
to detect convection in clouds and to distinguish blowing dust
from, say, blowing snow in satellite imagery.

We have only scratched the surface here of exploring how
TDA can support image analysis tasks in environmental science,
but we hope that this primer will accelerate the use of TDA for
this purpose.
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